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Abstract. This work will serve as a starting point for further and more in depth exploration.

1 Example Chapter: Introduction To Pressure in a liquid at depth:

First we introduce some physical constants, units, and unit conversions. Some conversions for pressure are

1Pa = 1
N

m2

1.01325× 105Pa = 1atm

= P0. (1)

Where Pa are Pascals, the SI unit for pressure, that are also in the units of Newtons N per meters
squared m2. Atmospheric pressure is atm, and the conversion to Pascals is above.
Some other physical constants are density ρ

ρ =
m

V
=

Mass
Volume

. (2)

The density of pure water is

ρpureWater = 1000
kg

m3
.

The density of Salt water is

ρseaWater = 1027
kg

m3
. (3)

This density varies little with depth, we will not worry about this for now.
The density of air at sea level at 20◦C is

ρair20◦C = 1.3
kg

m3
. (4)

The density of air at sea level at 0◦C is

ρair0◦C = 1.2
kg

m3
.

1.1 Hydrostatic Equilibrium, Pressure in a Liquid at Rest.

Now we consider some physical relationships. In equilibrium the pressure in a static fluid decreases with
height at a rate of

dP

dz
= −ρg.

Here P is pressure, ρ is the density of the fluid, and g = 9.8ms2 is gravitational acceleration. We integrate
this and we get pressure as a function of z.

P (z) = P1 + ρg (z1 − z) . (5)

Here P1 is the known pressure at a surface interface, say atmospheric pressure at the surface of a body
of water, and z1 is the height from the surface interface. The z coordinate can be negative or positive,
corresponding to a rise or fall in P (z) pressure. This can be seen in figure 1.
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Fig. 1. Pressure at depth in a hydrostatic liquid, with a column of air above.

For example, at a depth of 10m into the ocean, the pressure, in units of Pascals, will be

P (10m) = 1.01325× 105Pa+
(
1027

kg

m3

)(
9.8

m

s2

)
(0− (−10m))

= 1.01325× 105Pa+ 100646 kg
m3

m

s2
m

= 1.01325× 105Pa+ 100646 N
m2

= 201971Pa. (6)

In atms we have

201971Pa
1atm

101325Pa
= 1.99atm.

1.2 Fluid Dynamics, Streamlines and Laminar Flow.

For fluid dynamics we will consider a liquid moving at a velocity in a tube. Initially we assume an incom-
pressible fluid, with the flow along the stream lines being steady, irrotational and laminar. The physical
setup is a stream tube with an area and velocity at both end, and can be seen in figure 2.
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Fig. 2. Stream tube with liquid at steady flow.

We will use the two very important relations to describe the physics of this streamline, the Equation of
Continuity and Bernoulli’s Law. For a steady flow, the amount of mass m in the volume does not change,
so the flow at any point along the stream tube is

dm

dt
= ρAv = constant.

We can set the Area and velocity on each end equal to each other, giving us the Equation of Continuity,

A1v1 = A2v2. (7)

Here An is the area and vn is the velocity at two opposite ends of a pipe.
Using the work energy theorem, to relate the work done by the net force to the change in kinetic energy

gives us Bernoulli’s Law,

P + ρgz +
1

2
ρv2 = constant along streamline. (8)

The first term P is the pressure in the pipe, and accounts for work done by internal forces. The second
term, ρgz, is the gravitational potential energy per unit volume and will depend on the definition of the
starting values of height for different pressure situations. The third term is for the kinetic energy per unit
volume. Next we consider the physical setup of interest.

2 Example Chapter: Finding solutions by matrix operations

Now that we have 4 equations, and four unknowns, we can use a matrix to find the solutions.

2w − 3x+ 2y + 5z = 10

5w + x+ 5y + z = 2

w + x+ 3y − 7z = 3

−3w + 4x+ 6y + z = 7
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To demonstrate the usefulness of a matrix, we use an example of solving equations. Our first two equations
are

3x+ 2y = 10

x+ 5y = 2 (9)

Now we put these into a matrix. The coeffi cient matrix is

A =

(
3 2
1 5

)
The variable matrix is

x =

(
x
y

)
The constant matrix is

B =

(
10
2

)
Writing this out gives us the equation

Ax = B. (10)

The solution is found by taking the inverse of matrix A, and multiplying by matrix B.

A−1Ax = A−1B

x = A−1B (11)

The inverse of A is

A−1 =

(
3 2
1 5

)
, inverse :

(
5
13 − 2

13
− 1
13

3
13

)
(12)

Now we multiply A−1B

A−1B =

(
5
13 − 2

13
− 1
13

3
13

)(
10
2

)
=

(
46
13
− 4
13

)
(13)

Our result is

x = A−1B(
x
y

)
=

(
5
13 − 2

13
− 1
13

3
13

)(
10
2

)
=

(
46
13
− 4
13

)
(14)

3 Example Chapter: Behavior of the solution function

To get a understanding of the solution function, we use the concepts from Precalculus to analyze the behavior
as we approach the vertical asymptote.
Lets look at the function,

y =
x2

(x2 − 1)
A simple example of how the function works. this is seen in Fig 3.
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Figure 3. The function can not have negative solutions, and may have a larger solution, but will not be less
than y = 1.

The red line represents the function. We see that when x is smaller than one, we get a negative solution
going down to negative infinity, −∞, as we approach x = 1. There is a vertical asymptote at x = 1. A
vertical asymptote occurs when we have

y =
(1)

2

(1)
2 − 1

=
1

1− 1 =
1

0
.

As x increases from x = 1, our solution comes down from positive infinity, +∞, and the solution becomes
smaller as x becomes larger. We also see that the solution can never become smaller than y = 1, as there is
a horizontal asymptote at y = 1, and is found by dividing the numerator by the denominator.

y =
x2

x2
= 1

This tells us many things about the function, depending on the physical parameters.

4 Example Chapter: Table of Solutions for your problem.

To easily compare all of the important values, a table is constructed. Here we have a table 1 of values for
Gold nanorods.
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Table 1: Table of values for Micro Gold Rods L=5000 nm D=75nm Aspect ratio 6.7 .

In the table above we see that....

5 Example Chapter: Conclusion

In conclusion, we have found that your idea is plausible......
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